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Abstract Notation 

The use of symbols to express phases in direct methods 
leads to relations between symbols (symbol relations). 
The relative probability of a symbol relation is defined 
in such a way that it has additive properties. The 
algorithm given in this paper is developed for the 
deconvolution of the symbols and is applicable to 
symmetric phases (0 or n) and to anti-symmetric 
phases (+½n or --½n); weighted symbol relations are 
used as input and figures of merit are calculated for all 
permutations of phases for the symbols. The algorithm 
is especially useful when a large number of symbols is 
used. 

Introduction 

Nowadays, the majority of structures solved by direct 
methods are probably solved by using the multisolution 
program M U L T A N  (Main, Lessinger, Woolfson, Ger- 
main & Declercq, 1977). However, the use of symbols 
to express unknown phases remains a powerful tool as 
well. Several methods to process and decode symbolic 
phases have been developed (Karle & Karle, 1966; 
Beurskens, 1964; Schenk, 1971; and others). 

It is the authors' view that by using more than just a 
few symbols, causing a large number of reflections to 
take part in the initiation of the calculations, one avoids 
the use of single or weak phase relationships in the 
initial - often crucial - stages of a phase generation 
procedure. This requires a fast and convenient algo- 
rithm for disentangling the large bulk of symbol 
information. In this paper we describe a suitable 
algorithm ( S Y M A N ) f o r  the deconvolution of symbol 
relations into symmetric phases (0,n) or anti-symmetric 
phases (+½n,--,~n). 
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~0h 
a, b, c, ... 

is the (unknown) phase of a reflection h 
are the symbols that represent unknown 
phases 
is a linear combination of symbols (e.g. 
a - 2b) 
is a numerical phase, or the numerical 
part of a symbolic phase (e.g. ~Oh = a -- 2b 
+ n can be written as tPh = X + n) 
is the weight associated with the use of 
the sigma-2 or tangent formula for the 
determination of the phase ~0h 

ac =aexp (i(Ph)= 2c7 3 0"2 3/2 IEhl ~ IEh_kEkl 
k 

x exp/(~h-k + ~k), (1) 

where the summation is restricted to 
terms in which (tPh-k + ~0k) is expressed by 

N the same symbol x, a m = Y i--x Z~'for N 
atoms per unit cell 

Symbol relations 

Suppose the phase ~0h has been calculated as X 1 "[- n~, 
with weight a 1, and, independently, as x 2 + n 2, with 
weight a 2. This gives the symbol relation 

Xl + n~ -- x z -- n2 = 0 (mod 2n). (2) 

The variance of this result (acentric), or the probability 
that this relation is correct (centric), is a function of al 
and a 2. 

In view of computer time and programming con- 
venience it is generally desirable to replace variances 
and probabilities by weights which have additive 
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p r o p e r t i e s ;  th is  is e s sen t i a l  in t he  s y m b o l  a n a l y s i s  
a l g o r i t h m  S YMAN. 

T h e  we igh t ,  are i, a s s o c i a t e d  w i th  (2), will be  de f ined  
in A p p e n d i x  1. 

W e  use  the  fo l l owing  p r o p e r t i e s :  

are I is a f u n c t i o n  o f  aa a n d  a2;  
if  for  t w o  o r  m o r e  re f l ec t ions  the  s y m b o l i c  p h a s e s  

l ead  to  iden t i ca l  s y m b o l  r e l a t ions ,  the i r  we igh t s  a re  

a d d e d ;  
a n e g a t i v e  are ! va lue  impl i e s  a c o n t r a d i c t i o n ,  o r  a 

p h a s e  shi f t  zt ( for  i n s t a n c e :  a + 2b + zt = 0 w i th  w e i g h t  

are ~ c a n  be  w r i t t e n  as  a + 2b = 0 wi th  w e i g h t  --are~); 
a re1 = 0 m e a n s  t h a t  t h e  s y m b o l  r e l a t i on  h a s  n o t  b e e n  

o b s e r v e d ,  o r  t h a t  t he  c o n t r i b u t i o n s  to  th is  r e l a t i on  

c a n c e l  out .  

The procedure S Y M A N  

T h e  fas t  s y m b o l  a n a l y s i s  p r o c e d u r e  t r a n s f o r m s  an  
o r d e r e d  list o f  w e i g h t s  for  s y m b o l  r e l a t i ons  in to  a list  

T a b l e  1. The procedure S Y M A N  in the algorithmic 
language A lgol60 

procedure SYMAN(NS,A); value NS; inte__tC_fi~ NS; integer array A; 
comment NS = number of symbols, A is defined as A [0: 2**NS -1]; 
begin integer MAX, KSTEP, I, LMAX, K, N, L, TEMP; 

MAX: = 2**NS; KSTEP: = MAX*2; 
for I: = 1 step I until NS do 
begin KSTEP: = KSTEP/2; LMAX: = KSTEP/2; 

for K: = 0 step KSTEP until MAX - I d_fi 
begin N: = K + LMAX; 

fo___Lr L: =0  step 1 until LMAX- 1 d__9_o 
begin TEMP: = A[K + L]; 
- -  A[K + L]: = TEMP + A[N + L]; 

A[N + L]: = TEMP - A[N + L] 
end end end end; 

o f  f igures  o f  m e r i t  fo r  t h e  p o s s i b l e  s o l u t i o n s  ( p h a s e  
va lue s  for  s y m b o l s ) .  T h e  a l g o r i t h m  is g iven  in T a b l e  1, 
u s ing  the  a l g o r i t h m i c  l a n g u a g e  A l g o l 6 0  ( N a u r ,  1963) .  
T h e  p r o c e d u r e  is e x p l a i n e d  b y  t he  n u m e r i c a l  e x a m p l e  
g iven  in T a b l e  2. In  t he  e x a m p l e  we  h a v e  t h r ee  s y m b o l s ,  
a,  b a n d  c; e a c h  o f  t h e s e  s y m b o l s  r e p r e s e n t s  a p h a s e  0 
o r  zt. W i t h  the  t r ivial  iden t i t i es  - a  = + a  a n d  2 a  = 0,  
t h e r e  a re  s e v e n  (23 --  1) poss ib l e  s y m b o l  r e l a t ions  w i th  

w e i g h t s  are 1. 
A s y m b o l  r e l a t i on  is r e p r e s e n t e d  a n d  ident i f ied  by  a 

b i n a r y  n u m b e r  ( d e c i m a l  v a l u e  = i) s u c h  t h a t  a d ig i t  0 
o r  1 d e n o t e s  the  a b s e n c e  o r  p r e s e n c e  o f  the  c o r r e s p o n d -  
ing  s y m b o l  in th i s  r e l a t ion .  F o r  e a c h  o f  t h e  s e v e n  
s y m b o l  r e l a t i ons  t he  w e i g h t  is s t o r e d  in a t ab l e  A a t  
p o s i t i o n  i; n o t a t i o n :  A [i]. T h e  t r ivial  i den t i t y  0 = 0 w i t h  
a = 0 is s t o r e d  at  i = 0. 

In  t he  s u c c e s s i v e  s t ages  o f  t he  p r o c e d u r e  t he  s y m b o l s  
are  e l i m i n a t e d  o n e  b y  one .  F o r  t he  e l i m i n a t i o n  o f  t h e  
s y m b o l  c ( s t age  1) t he  c o n t e n t s  o f  t ab le  A a re  d i v e r t e d  

in to  t w o  s u b t a b l e s :  o n e  for  the  s u b s t i t u t i o n  o f  c - 0 a n d  
one  for  t he  s u b s t i t u t i o n  o f  c = zt. 

F o r  i n s t a n c e  (see  T a b l e  2, s t age  1): 
F o r  c = 0 the  r e l a t i on  c + a = 0 (i = 5) b e c o m e s  a --- 

0, a n d  its w e i g h t  is a d d e d  to  t he  we igh t  o f  t he  r e l a t i on  
a = 0  ( i =  1 ) : A [ 1 ]  = +1  - 4  = - 3 .  

T h e  s y m b o l  r e l a t i on  c = 0 (i = 4) n o w  c h a n g e s  i n to  
t h e  i den t i t y  r e l a t ion  0 = 0 (i = 0): A[0]  = --3.  T h e  
resu l t  is a f igure  o f  m e r i t  fo r  t he  s u b s t i t u t i o n  c = 0. 

T h e  c o m p l e t e  i n f o r m a t i o n  for  c = 0 is s t o r e d  in t h e  
s u b t a b l e  i = 0 - 3 .  

S u b s t i t u t i o n  o f  c = zr in t he  s y m b o l  r e l a t i on  c + a = 0 
(i = 5) g ives  a = ~z w i t h  a =  - 4 ,  o r  a = 0 wi th  a = + 4 ,  
w h i c h  is to  be  a d d e d  to  t h e  w e i g h t  o f  a = 0 (i = 1). T h e  
resul t ,  h o w e v e r ,  is s t o r e d  in the  s u b t a b l e  i -- 4 - 7 :  
A [ 5 ] = + 1 + 4 = + 5 .  

T a b l e  2. Numerical example for  three symbols 

i 0 1 2 3 4 5 6 7 

Binary representation 000 001 010 011 100 101 110 111 
Symbol relation * a = 0  b = 0  b + a = 0  c = 0  c + a = 0  e + b = 0  c + b + a = 0  

aret = A[il 0 + 1 0 -5 -3 -4  -3 + 1 
Stage 1: 

substitute c = 0 c = 0 c = 0 c = 0 c = zt c = zt c = rt c = zr 
add pairs (i,i') 0,4 1,5 2,6 3,7 0,4 1,5 2,6 3,7 

for symbol relation • a = 0 b = 0 b + a = 0 * a = 0 b = 0 b + a = 0 
A[i] - 3  - 3  - 3  - 4  +3 +5 +3 - 6  

Stage 2: 
eliminate b b = 0 b = 0 b = zt b = zt b = 0 b = 0 b = zt b = zt 

add pairs (i,i') 0,2 1,3 0,2 1,3 4,6 5,7 4,6 5,7 
for symbol relation * a = 0 * a = 0 * a = 0 * a = 0 

A[i] - 6  --7 0 +1 +6 --1 0 +11 

Stage 3: 
eliminate a a = 0 a = zt a = 0 a = zt a = 0 a = zt a = 0 a = zt 

add pairs (i,i') 0,1 0,1 2,3 2,3 4,5 4,5 6,7 6,7 
A[i] - 1 3  +1 +1 - 1  +5 +7 +11 -11  

FOM <0 0.06 0.06 <0 0.29 0.41 0.65 <0 
for phases c, b, a 0,0,0 0,0,zt 0,~0 0,n, zt n0,0 zt,0,z~ z~,zt,0 zt,~zt 

* Identity: 0 = O, see text. 
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Now the position 1 is associated with the phase of c 
and with the symbol relations involving b and a. 

In stage 2 each of the two subtables is diverted for 
the elimination of the symbol b. In stage 3 each of the 
four subtables is diverted for the elimination of the 
symbol a. 

After elimination of all symbols the binary rep- 
resentation of i corresponds to a combination of phases 
for the symbols in such a way that a digit 0 or 1 
denotes a phase 0 or n. The final weight, stored at 
position i, is a measure of the consistency of the symbol 
relations for the corresponding phase values. The A[i] 
values may be divided by the sum of the absolute 
values of the input weights, to obtain relative figures of 
merit (FOM). One or more of the most probable 
solutions may be selected by the user. (For instance: 
Table 2, stage 3. A[6] = +11, FOM = 0.65; the most 
probable solution is c = ~, b = n, a = 0.) 

The deconvolution of anti-symmetric phases requires 
a redefinition of the binary codes for symbol relations 
and for the final phase values. The symbols are chosen 
to represent phases +½n and --½~ with trivial identities 
2a -- n and - a  = a + re. Because of the binary nature 
of the transformation we can only use symbol relations 
of the type a = b and a = b + zr, i.e. the phases of a and 
b are equal or not equal. The binary code defined earlier 
for a + b = n now represents the relation a = b + n; the 
binary codes for the phases 0 and n now refer to the 
phases +½n and -½~  respectively. Apart from these 
redefinitions the procedure is the same. 

Discussion and applleatlons 

The usual consistency criteria or figures of merit are 
based upon phase permutations performed for every 
individual reflection and, consequently, the computer 
time depends on the number of symbols, the number of 
reflections and the number of different phase in- 
dications per reflection. In S Y M A N  all symbol infor- 
mation is deconvoluted simultaneously and the com- 
puter time depends on the number of symbols only. 

The computer time involved is negligible as long as 
no more than ten symbols (21° possible solutions) are 
analyzed. The time is doubled for each additional 
symbol. For an IBM 370/158 the computer time for 
the analysis of 15 symbols is 5 s. 

The gain of time is most considerable when a large 
number of symbols is used and many reflections take 
part in the phase generating procedure. 

S Y M A N  has been implemented in the sign cor- 
relation program (Van den Hark, 1976) for the analysis 
of 26 symbols. 

S Y M A N  is also used in the special D I R D I F  
procedures for origin specification (Beurskens, Prick, 
Van den Hark & Gould, 1980) and for enantiomorph 
discrimination (Prick, Beurskens & Gould, 1978). Ten 

symbols, together with hundreds of phases derived 
from known heavy-atom positions, are input to the 
tangent formula; the symbol phases destroy the 
heavy-atom super-symmetry. 

In the general case S Y M A N  can be applied to the 
symmetrical and antisymmetrical parts of the complex 
symbol relations, and the results are averaged to obtain 
phases + ] ~  + ] ~  We have not yet investigated this 
possible application. 

Part of this work was performed at the University of 
Michigan; one of us (PTB) is most grateful for the 
hospitality he enjoyed at the Chemistry Department 
and wishes to thank Dr Chr. Nordman for many 
pleasant discussions. 

APPENDIX 1 

The weight for a symbol relation 

Formula (1) is equivalent to the sigma-2 formula or the 
tangent formula (Karle & Karle, 1966). The weight for 
a particular result is given by a. For centric phase 
distributions (all reflections in centrosymmetric space 
groups, or special reflections in non-centrosymmetric 
space groups), the probability that (1) gives the correct 
value of rphiS given by Cochran & Woolfson (1955): 

P = ½ + ½ tanh(½a). (3) 

For acentric phase distributions (general reflections 
in non-centrosymmetric space groups) the variance o 2 
of the result for ~Ph is given by Karle & Karle (1966; 
see also Karle, 1976); in 'shorthand' notation: 

o2= V(a). (4) 

The weight Ctre I for a symbol relation (2) obtained 
from two independent results (1) with weights a~ and a 2 
is defined as follows. 

Centrie 

Equation (3) gives the probabilities P1 and P2 for 
the two sign indications, x 1 + n 1 and x 2 + rt 2. 

The probability for the symbol relation (2) is given 
by 

P r e , - - P 1 P 2 / [ P 1 P  2 + ( 1 -  P1)(1--P2)]. (5) 

Similarly to the use of the weight a for symbol 
phases, we introduce are I as the weight for the symbol 
relation. 

Define are I in analogy with (3) by 

Prel = ½ + ½ tanh (½arel). (6) 

From (3), (5) and (6), and using the properties of the 
hyperbolic function, we derive 

tanh ½are I = tanh ½a~ tanh ½a 2. (7) 

Some numerical examples are given in Table 3. 
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If  the same symbol  relation is obtained f rom different 
reflections, its probabil i ty increases according to 

Pre'= l--[ Pre" ' /[~ Prel.l + I-I (1--  Pre', ') 

and its weight increases according to 

(8) 

arel--  Z arel, l, (9) 
l 

as can be seen by substitution of  (6) in (8). Thus we 
have an expression for the weight (7) tha t  has additive 
properties (9). 

Acentric 

The var iances  V(al) and V(a2) of  two phase indi- 
cations for one reflection can be calculated. In view 
of  the large number  of  phase relationships, we may  
assume a normal  distribution of  deviations. 

Table 3. The weight are I for  centrie symbol 
relations, for  various a I and a 2 values (equations 6 

al = 0.5 
Pl = 0.62 

a2 
1.0 0.2 
2.0 0.4 

10.0 0.5 

and 7) 

Accuracy = 0.05. 
1.0 1.5 2.0 4.0 10.0 
0-73 0-82 0.88 0.98 1.00 

0.4 0.6 0.7 1.0 1-0 
0.7 1.1 1.3 1.9 2.0 
1.0 1.5 2.0 4-0 9.3 

Then the var iance of  the symbol  relation is given by 

2 O'rei = e 2 + 022 - -  V(O~l) "{" V ( c L 2 ) .  (10) 

In analogy with the centric case, we define the weight of  
the symbol  relation as 

= W-1 ¢t72 arel ~, rel/, (11) 

where the function V -1 is the inverse of  the function V 
(equation 4). Substi tution of  (10) into (11) gives 

arel = V-l[V(al )  + V(a2)]. (12) 

In this way,  are i is defined as a function of  a I and a 2. 
Numerica l  values are given in Table 4. By compar ing 
Tables 3 and 4, it is clear the acentric symbol  relations 
are less powerful  than  centric symbol  relations. The 
reliability of  a multiple symbol  relation increases,  or the 
s tandard  deviation decreases,  according to 

°'Te 2=  Z 0-2 (13) rel, l" 
l 

F r o m  this result and definition (11), we can calculate 
are I of  a multiple symbol  relation. In contras t  with the 
centric case, are I has no strictly additive properties and, 
in analogy with (9), we define the approximat ion  

are I ~ ~.arel,/. (14) 
l 

True and approximated  are I values are compared  in 
Table 5. The agreement  appears  to be good enough for 
practical  applications. For tunate ly ,  the approximat ion  
is an underest imation for the weaker  contributions.  

Table 4. The weight tire I for  acentric symbol relations, 
for  various a I and ct 2 values (equations 10-12)  

Accuracy = 0.05. 

a 1 = 0.5 1.0 1.5 2.0 4.0 10.0 
tr t = 88 ° 72 ° 60 ° 50 ° 31 ° 19 ° 

a 2 
1.0 0.0 0.0 0.3 0.5 0.8 1.0 
2.0 0.1 0.5 0.8 1.1 1.5 1.8 

10.0 0.4 0.9 1.4 1.8 3.2 5.3 

Table  5. Comparison of  true and approximated ave ~ 
values for  acentric multiple symbol relations 

arel a rel 
arel, l arel, 2 arel. 3 (true) (equationl4) 

0.5 0.5 1.5 1.0 
0.5 0.5 0.5 2.0 1.5 
0.5 1.0 1.7 1.5 
0.5 2.0 2.5 2.5 
1.0 1.0 1.0 2.6 3.0 
2.0 2.0 2.0 4.5 6.0 
2.0 4.0 5.4 6.0 
4.0 4-0 7.3 8.0 
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